
六年级上册数学分数除法教案
作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。优秀的教案都具备一些什么特点呢?下面是小编精心整理的六年级上册数学分数除法教案,欢迎阅读,希望大家能够喜欢。
六年级上册数学分数除法教案1教学目标:
1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。
2、根据题意,能画线段图分析图意。
3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。
教学过程:
一、巩固旧知,过渡引入
1、根据题意,判断谁是单位1,并写出各题的数量关系。
(1)故事书本的`2/5等于连环画的本数。
(2)梨重量的7/8是840千克。
(3)男生人数是全班人数的2/3 。
2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
[这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]
二、学习新知
1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?
(1)读题,找出已知条件和问题。
(2)根据题意与线段图理解题中的条件和问题。
(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。
体重× 4/5 =体内水分重量
师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?
(4)学生尝试练习方程解答,个别板演,教师点评。
(1)解:设这个儿童体重χ千克
(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5
χ=35答:这个儿童体重35千克。
六年级上册数学分数除法教案2设计说明
分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:
1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。
教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。
2.重视对相关概念、性质及某些知识间相互关系的复习。
教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。
3.重视对学生解决问题能力的培养。
教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。
课前准备
教师准备 PPT课件
教学过程
⊙整理复习
1.结合教材习题,复习分数乘、除法的意义,计算方法及一些特殊规律。(板书课题)
(1)(出示课件)先想一想分数乘、除法应该怎样计算,再计算下面各题。
×= ×= ×18=
÷= ÷= 21÷=
÷= ÷= ×=
①复习分数乘法的'计算方法。
(分子与分子相乘的积作分子,分母与分母相乘的积作分母。能约分的可以先约分再计算)
②复习分数除法的计算方法。
[甲数除以乙数(0除外)等于甲数乘乙数的倒数]
③生独立计算。
④观察左边两列算式,你能发现乘法与除法之间有什么规律吗?
(乘法与除法是互逆运算)
(2)结合×和×18复习分数乘法的意义。
(一个数乘分数表示求这个数的几分之几是多少;一个数乘整数表示求几个相同加数的和的简便运算,与整数乘法的意义相同)
(3)结合÷和21÷复习分数除法的意义。
(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算)
(4)复习分数四则混合运算。
①分数四则混合运算的运算顺序是怎样的?
(与整数四则混合运算的运算顺序相同)
②下面各题怎样简便就怎样算,并说一说算理。
+++
15×
+3÷
3.7×+1.3÷
÷
0.5×
2.复习倒数的意义及相关知识。
(1)什么叫倒数?0为什么没有倒数?
(乘积是1的两个数互为倒数。因为0和任何数相乘都等于0,所以0没有倒数)
(2)写出下面各数的倒数。
5 1
(3)判断下面的说法是否正确。
①一个真分数的倒数一定比这个真分数大。( )
②一个数乘分数的积一定比原来的数小。( )
③一个数除以分数的商一定比原来的数大。( )
3.复习比的意义及相关知识。
(1)(出示课件)说出下面每个比的前项、后项。
2∶5 0.6∶0.3
(2)结合上题,复习比的意义及比的各部分名称。
(两个数相除又叫做两个数的比,比号前面的数叫做比的前项,比号后面的数叫做比的后项)
(3)复习比值的意义及求法。
(比的前项除以比的后项,所得的商叫做比值)
(4)复习比与分数、除法的关系。
(根据学生的回答进行对比复习。比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商)
六年级上册数学分数除法教案3分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:
1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。
教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆 ……此处隐藏6358个字……吃几天?
方法二:12片可以吃:12÷ =12×2=24(次)
24次可以吃:24÷3=8(天)
(4)互相交流,请两位同学板演并说一说解题思路。
(5)列出这两种方法的`综合算式。
(6))提问:综合算式里分别含有几级运算?应先算什么,再算什么?
7)小结:分数混合运算和整数混合运算相同,在同级运算中,如果
没有括号,按从左往右的顺序计算。如果有两级运算,先算乘除,再算
加减。有括号的先算小括号,再算中括号。
活动3【练习】巩固练习
1、完成教材第33页“做一做”。
提问:梯形的面积公式是什么?
2、完成教材第35页第10题。
活动4【作业】课堂小结
这节课你有什么收获?
六年级上册数学分数除法教案8教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。
教学目标
逆向思维,能根据具体的.数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、 能确定单位“1”,理清题中的数量关系。
2、利用题中的等量关系用方程解答。
教学过程
一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。
⑴、梨的重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔X元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果X千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模小组有人。
(1+)=25
=25÷
=20
答:略。
三、小结
1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
六年级上册数学分数除法教案9教学目标:
使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。
教学重点:
整数除以分数的计算方法的推导。
教学难点:
理解“÷”转化为“×”的转化过程。
教学过程:
一、复习
1、说一说÷18的意义。
2、一辆汔车2小时行驶90千米,1小时行驶多少千米?
(1)口述算式和结果。
(2)板书:数量关系:速度=路程×时间
二、新授
今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?
板书课题:一个数除以分数
(1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?
教师板书:18÷ (出示线段图)
(2)推导18÷的计算方法。
引导学生分两步进行计算
第一部分:求小时行多少千米。
提问
1)、小时里面有几个小时?
2)、2个小时行驶多少千米?
3)、1个小时行驶多少千米?即小时行驶多少千米?
明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。
提问
1)、1小时里面有几个小时?
2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?
明确
1) 为1小时5个小时,所以,要算18××5,也就是18×。
2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。
根据上面的推想,板书:18÷=18×,=45千米
答汔车1小时行驶45千米。
强调
1)18÷不便于直接除,把它转化乘法。
2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。
3)是的倒数,即的'倒数是。
2、小结:引导学生归纳整数除以分数的计算方法。
板书:整数除以分数可以转化为乘以这个数的倒数。
三、巩固练习
1、在( )里填上适当的分数,使等式成立。
15÷=15×( )10÷ =10×( )
8÷=8×( ) ÷9=×( )
2、列式计算。
(1)一堆煤,每次用去 ,多少次才能用完?
(2)王晶小时做15朵花,1小时做多少朵花?
3、教科书第29页的“做一做”
四、作业 练习八第1——4题。