
双曲线教学反思
身为一名刚到岗的教师,我们需要很强的课堂教学能力,写教学反思可以快速提升我们的教学能力,教学反思应该怎么写才好呢?以下是小编为大家收集的双曲线教学反思,仅供参考,大家一起来看看吧。
双曲线教学反思1本节课我在45分钟内完成了规定的教学内容,较好地完成了教学任务,达到了预期的教学效果。上完这节课后我认真地进行了反思,具体内容如下:
一、教学过程回顾
1.导入新课:问题1:椭圆的第一定义是什么?
问题2:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?设计方法加以验证。
2.进入新课:问题3:类比椭圆定义和标准方程,你能得出双曲线的标准方程吗?
问题4:回忆椭圆标准方程的推导方法,你能推导双曲线标准方程吗?(本节课我主要是和椭圆进行类比教学,通过椭圆向双曲线过度)
二、成功之处:
1、教学方法上:"突出教学内容中主要的、本质的东西;将每堂课具体任务与整个教学任务合理地结合起来;选择最合理的教学方法和手段。"结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学这两种教学方法,体现了认知心理学的基本理论。
2.学习的主体上:课堂不再成为"一言堂",学生也不再是教师注入知识的"容器瓶",课堂上为学生的主动参与提供充分的时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),真正做到了"六让":凡是学生能够自己学习的、观察的、讲的(口头表达)、思考探究的、合作交流的、动手操作的,尽量都放手让给学生去做、去活动、去完成,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的'转化,变书本的知识、老师的知识成为自己的知识。
3、学生评价上:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做得精彩有创新,教师给予学生充分的鼓励,使得本节课学生在学习过程中兴趣浓厚,学得积极主动,课堂气氛活跃!从而进一步激发学生创造的潜能,提高他们的创新能力。
4、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,交流练习互穿插的活动课形式,学生始终处于问题探索研究状态之中,激情引趣。教师创设和谐、愉悦的环境及辅以适当的引导。促进学生说、想、做,注重"引、思、探、练"的结合,鼓励学生发现问题,大胆分析问题和解决问题.进行主动探究学习,形成师生互动的教学氛围。
5、教学实效上:不因为比赛,而搞花架子。既让学生在基础上巩固、深化、应用双曲线的定义并掌握待定系数法求标准方程,又可加强对代数运算能力的培养,在此体验方程、化归、数形结合、分类整合等数学思想,为下一节《双曲线的几何性质》的学习即"由数到形"作了坚实铺垫和准备。
三、不足之处:
1.本节课的知识量比较大,而且是建立在双曲线定义基础之上。这些知识学生都已经学过了,在课堂上只做了一个简单的复习。但是在接下来的课堂上发现一部分学生由于课前预习的工作不够落实,导致课堂上简单的复习效果不好,从而影响到学生在第二个过程的例题讲解中反映出的思维比较的缓慢及无法进行有效的思考的问题,因此在以后的较学中要加强对学生学习习惯的培养,特别是课前预习的好的学习习惯,加强对上节课程的复习。
2.从课堂的效果来看学生对运算的熟练还不够,他们总是担心会出问题,特别是解方程题缺乏化简的能力,教学上我的处理是在教学的过程中如果出现了这类问题,就具体跟学生讲解,然后让学生练习总结。今后还要加强对学生这方面能力的培养。
以上就是我的教学反思,在教学中还有很多不足,在以后的教学中要继续努力,不断总结经验教训,迈上新的台阶,为高中数学教育作出贡献。
双曲线教学反思2随着课程改革的不断推进,在开展的各种公开课、展示课的活动中,以下三方面的问题引发教师们的更多思考:
一、教学需要讲求实效
教学的实效性是课堂的生命线,在学生学习的主战场——课堂,不具有效率就不具有生命力,因此,我们会发现,有些课型只能昙花一现(公开课中),而在常规课堂几乎没有生存空间。
有效教学要使学生建立良好的知识网络体系。良好知识结构应把知识及知识形成发展的脉络及蕴含的数学思想方法、知识间的内在联系、结论的推导证明线索融合成一个有机整体,也只有这样的知识才有利于转化成长期记忆,才能够在需要时被自如调用。本课突出展现了双曲线几何性质的获得过程,特别是对于教材中出现较为突兀的虚轴和渐近线,从双曲线方程的研究中获得了很好的解释,并把双曲线几何性质及其发现获得的过程用下图展示出来,有利于学生建立双曲线几何性质的良好知识网络,此外,为了加强两种标准位置双曲线几何性质的对比和联系,在小结中又增加了让学生按表格进行梳理的要求。
有效教学要促进学生迁移运用所学,发展学生学习的积极情感。本课在研究获得双曲线的几何性质后,设计了两项任务:一是自行研究获得双曲线 的几何性质,二是练习题“研究的渐近线”,以此促进学生迁移运用所学的研究方法,加深学生对研究过程的理解和认识,并通过练习题的归纳、发现,激发学生学习的积极情感,感受数学思考发现的快乐。
有效课堂教学活动在课堂结束时,学生的学习活动不应该停止,而是在解决了原有问题后,引发学生新的思考与发现,课堂的教学应该是为了课下的不教。正常来讲,一个人知道的越多,疑问也就应该越多,需要思考研究的问题也就越多,因此,应该鼓励学生对学习过程中去反思和梳理,发现新的思考探究点,不断扩大自己的认识。本课结尾部分是出于该想法进行设计的,但是在实际教学活动中,由于时间关系,教师只能在拖堂的一分钟时间内匆匆提出,没能给予学生思考时间。
二、如何摆正教师教的主体和学生学的主体地位?
从教学的最根本目的“通过教学活动促进学生的发展”来看,这就决定了学生在教学活动中处于最核心的地位,不论是以什么样的教学方式、技巧,其效用的实现,最终都离不开学生主体的心理及思维活动,因此,教师的教必须以学生为出发点,以学生已有认知水平为基础。
从学生学习的发生条件来看,学生主体的系列心理及思维活动的发生,需要一定的数学学习情境的作用,而数学学习情境作用的大小,又取决于教师能否创设出与学生认知水平相适应的学习情境,因此,学习情境能否成为有效刺激,从而激活学生的数学学习活动(有深层次的数学思维参与)的发生,都有赖于教师教的主体能动性的发挥。
因此,两个主体的关系概括来讲,就是教师教的主体作用,应体现在如何有效促进学生学习的主体 ……此处隐藏4154个字……节课讲解与探究相结合、交流与练习互穿插,采用启发式探究法让学生始终处于问题探索研究状态,激情引趣。在和谐、愉悦的环境中给予学生适当的引导,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题。
学生评价上:本节课从操作能力、概括能力、学习兴趣、情绪情感方面对学习效果进行过程评价。对出现问题的学生,能够及时指出其可取之处并耐心引导,培养学生勇于面对挫折,持之以恒地探索精神;当学生做得精彩有创新,教师给予学生充分的鼓励,因此本节课学生在学习过程中兴趣浓厚,学得积极主动,课堂气氛相对活跃。
教学不足之处与再设计:
1.课程导入环节
不足之处:通过动画演示完双曲线的图形后没有向学生强调两支曲线合起来叫双曲线,左边一支叫双曲线左支,右边一支叫双曲线右支。
原因分析:在设计时忽视了学生在这里会出现问题。
再设计:演示完双曲线图形,板书“双曲线及其标准方程”后向学生强调以上内容。
2.双曲线定义讲解环节
不足之处:在探究常数的条件时,对于不满足条件的情况——常数等于0和常数等于两定点间距离,学生没有分析出这两种情况下的轨迹图形,最后由教师给出。
原因分析:图形问题,学生仅凭想象不容易找出答案。
再设计:本环节先让学生思考,若学生想象不出,借用几何画板演示常数趋于0和趋于两定点间距离时点的轨迹,帮助学生猜想点的轨迹并说明猜想理由。
3.标准方程探究环节
不足之处:在双曲线和椭圆的标准方程比较时没有强调在椭圆中,分式较大的分母为a2;而双曲线中,正号分式的分母是a2。
原因分析:在双曲线和椭圆的标准方程比较时,学生已经分析出分母为a2的式子始终是正的,于是便默认学生可以反推正号分式的分母即为a2,没有再强调。
再设计:在比较双曲线和椭圆的标准方程时强调椭圆中,分式较大的分母为a2;而双曲线中,正号分式的分母是a2。
4.练习检测环节
不足之处:对学生说出的c等于正负4为及时进行更正。
原因分析:紧张导致只集中注意力听了学生的解题思路,对细节问题没有听出。
再设计:对学生容易出现错误的地方要谨慎,及时发现错误更正。
本节课经历了多次试讲打磨,是我们全组老师智慧的凝结。本节的成品课比
第一次的雏形课进步很大,由此我深深的体会到了集体的力量之巨大,合作的成效之显著。希望以后有更多的集体合作的机会。
双曲线教学反思6解析几何是整个高中数学的重点,更是难点。如何有效的引导学生加深对这部分内容的理解是我思考的一个问题。讲过双曲线及其标准方程之后我进行了如下的反思。
首先是对教学过程的回顾,在导入新课时我对比着椭圆的第一定义展开了这节课的学习:
问题一:椭圆的第一定义是什么?
问题二:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?
由于前面的铺垫工作做得比较好,同学们积极讨论纷纷发表自己的见解,我一看预期目标实现就趁热打铁进入了下个阶段。
然后是进入新课:
问题三:类比椭圆定义和标准方程,你能得出双曲线的标准方程吗?
问题四:回忆椭圆标准方程的推导方法,你能推导双曲线标准方程吗?
本节课我主要是和椭圆进行类比教学,通过椭圆向双曲线过渡。通过引导,使学生经历下列过程:首先建立坐标系,将几何问题代数化,用代数语言描述几何要素及其相互关系;进而,将几何问题转化为代数问题;处理代数问题;分析代数结论的几何含义,最终解决几何问题。通过上述活动,使学生感受到解析几何研究问题的一般程序。由“形”问题转化为“数”问题研究,同时数形结合的思想,还应包含构造“形”来体会问题本质,开拓思路,进而解决“数”的问题。
我个人认为这节课的成功之处在于:
一、教学方法上:突出教学内容中主要的、本质的东西;将每堂课具体任务与整个教学任务合理地结合起来;选择最合理的教学方法和手段;结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学这两种教学方法,体现了认知心理学的基本理论。
二、 学习的主体上:课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器瓶”,课堂上为学生的主动参与提供充分的时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),凡是学生能够自己学习的、观察的、讲的(口头表达)、思考探究的、合作交流的、动手操作的,尽量都放手让给学生去做、去活动、去完成,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识、老师的知识成为自己的知识。
三、学生评价上:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做得精彩有创新,教师给予学生充分的鼓励,使得本节课学生在学习过程中兴趣浓厚,学得积极主动,课堂气氛活跃!从而进一步激发学生创造的潜能,提高他们的创新能力。
四、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,交流练习互穿插的活动课形式,学生始终处于问题探索研究状态之中,激情引趣。教师创设和谐、愉悦的环境及辅以适当的引导。促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题.进行主动探究学习,形成师生互动的'教学氛围。
五、教学实效上:既让学生在基础上巩固、深化、应用双曲线的定义并掌握待定系数法求标准方程,又可加强对代数运算能力的培养,在此体验方程、化归、数形结合、分类整合等数学思想,为下一节《双曲线的几何性质》的学习即“由数到形”作了坚实铺垫和准备。
这节课的不足之处在于:
一、本节课的知识量比较大,而且是建立在双曲线定义基础之上。这些知识学生都已经学过了,在课堂上只做了一个简单的复习。但是在接下来的课堂上发现一部分学生由于课前预习的工作不够落实,导致课堂上简单的复习效果不好,从而影响到学生在第二个过程的例题讲解中反映出的思维比较的缓慢及无法进行有效的思考的问题,因此在以后的教学中要加强对学生学习习惯的培养,特别是课前预习的好的学习习惯,加强对上节课程的复习。
二、从课堂的效果来看学生的运算能力还要提高,他们总是担心会出问题,特别是解方程题缺乏化简的能力,教学上我的处理是在教学的过程中如果出现了这类问题,就具体跟学生讲解,然后让学生练习总结。今后还要加强对学生这方面能力的培养。
以上就是我的教学反思,要提高教学质量,我们就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。在教学中我还有很多不足,在以后的教学中要继续努力,不断总结经验教训,迈上新的台阶,为高中数学教育作出贡献。



