
圆柱的体积教学反思集合15篇
作为一名到岗不久的人民教师,我们需要很强的课堂教学能力,教学的心得体会可以总结在教学反思中,写教学反思需要注意哪些格式呢?下面是小编为大家收集的圆柱的体积教学反思,希望对大家有所帮助。
圆柱的体积教学反思1本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。
一、在教学过程的设计方面
1、导入时,力求突破教材,有所创新
圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、
流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。
2、新课时,要实现人人参与,主动学习
学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的.过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。
3、练习时,形式多样,层层递进
例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型。
a.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。
b.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。
c.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。
d.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。
e.已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。
因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。
二、在教学策略方面
我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。
三、在教学技能方面
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。
四、存在的问题
不足之处是:由于这节课的设计是以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,所以在学生动手实践、交流讨论和思考的时间上教师应合理把握,不能时间较多,否则会导致练习的时间较少。
另外,在练习设计上,题形虽然全,但觉得题量偏多,因为这部分练习涉及的计算多、难,这样练习题还需精心设计。
圆柱的体积教学反思2圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
从本节课教学目标的达成来看,较好地体现了以下几方面:
一、创设生活情境,体现数学生活化。
《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着我再出示第二个圆柱体,让学生比较哪个圆柱体的体积大,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的.设计上,为避免纯数学的计算,我采用学生生活中问题为背景,提出有关圆柱的体积问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。
二、引导学生经历知识探究的全过程。
动手实践、自主探究、合作交流是《新课程标准》所 ……此处隐藏11082个字……式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中考虑,培养同学科学的思维方法;贴近同学生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发同学的学习兴趣和对科学知识的求知欲,使同学乐于探索,善于探究。
在圆的体积公式推导过程中,给予同学足够的时间和空间,激发同学的探究的欲望,培养同学的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应和时捕获,让它开得绚丽多彩,从而让同学的个性能得到充沛的培养。让同学在学习的过程中体会到数学给自身带来了巨大的胜利感和喜悦感,我们老师这样才干寓教于乐,从而达到了事半功倍了。
《圆柱的体积》课后反思
本节可的教学内容是九年义务教育六年制小学教学第十二册﹙人教版﹚《圆柱的体积》,以前教学此内容时,直接告诉同学:圆柱的体积=底面积×高,用字母表示公式:V=S和,让同学套公式练习;我教此内容时,不按保守的教学方法,而是采用新的教学理念,让同学自身动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、同学学到了有价值的知识。
同学通过实践、探索、发现,得到的知识是“活”的,这样的知识对同学自身智力和发明力发展会起到积极的推动作用。所有的'答案也不是老师告诉的,而是、同学在自身艰苦的学习中发现并从同学的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了同学的科学精神和方法。
新课程改革明确提出要“强调让同学通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。同学动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了同学的思维发展。
保守的教学只关注教给同学多少知识,把同学当成知识的“容器”。同学的学习只是被动地接受、记忆、模仿,往往同学只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,同学在兴趣盎然中经历了自主探究、独立考虑、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识发生的过程,理解和掌握了数学基本知识,从而促进了同学的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,缺乏之处是:由于同学自由讨论、实践和考虑的时间较多,练习的时间较少。
新课程观强调:教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?自己结合“圆柱的体积”一课谈谈自身的实践与考虑。
[片段一]
师生一起探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少?
由于课前同学已进行了预习,多数同学是依照教材介绍的解法来解答:
1.5米=150厘米 20×1150=3000(立方厘米)
师:这道题还有其他结果吗?(同学又沉入了深思)不一会儿,另外两种结果纷纷展现:
①20平方厘米=0.002平方米 0.002×11.5=0.003(立方米)
②20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)
师:为什么会出现三种结果?
经讨论,同学才明白:从不同的角度去考虑问题,将得到不同的结果。
[片断二]
巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合出现给同学这样一个表格(表2)。
同学填表后,师:观察前两组数据,你想说什么?
同学独立考虑后再小组交流,最后汇报。
生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。
生2:两个圆柱的高相等,底面积越大,体积就越大。
师:观察后两组数据,你想说什么?
有了前面的基础,同学很容易说出了后两组的关系。
同学的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元的教学作了提前孕伏。
[片段三]
教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?
同学动手丈量自备的圆柱形茶杯的有关数据并计算它的体积。
师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自身每天需要饮用几杯水(自身的杯子)才干保证健康,并把自身对水的想法写下来,下节课我们再交流。
圆柱的体积教学反思15本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:
1、重视先猜想、再验证的思路来引入教学。
新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。
2、重视利用知识、方法的迁移来展开教学。
本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的'合理性,并不断丰富对图形转化方法的感受。
3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。
核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。
当然,需要注意和改进的地方是:书写格式的规范。